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Abstract

Introduction: It is unknown the alterations in the dynamic networks of the brain and the underlying molecular
pathological mechanism of Alzheimer’s disease (AD) spectrum. Here, we aim to explore the association between
alterations in the dynamic brain networks’ trajectory and cognitive decline in the AD spectrum.
Methods: One hundred sixty subjects were recruited from the ADNI database, including 49 early mild cognitive
impairment, 28 late mild cognitive impairment, 24 AD patients, and 59 cognitively normal. All participants com-
pleted the resting-state functional magnetic resonance imaging scan and neuropsychological tests. We integrated a
new method combining large-scale network analysis and canonical correlation analysis to explore the dynamic spa-
tiotemporal patterns within- and between resting-state networks (RSNs) and their significance in the AD spectrum.
Results: All RSNs represented an increase in connectivity within networks by enhancing inner cohesive ability,
while 7 out of 10 RSNs were characterized by a decrease in connectivity between networks, which indicated a weak-
ened connector among networks from the early stage to dementia. This dichotomous mode presenting large-scale
dynamic network abnormality was significantly correlated with the levels of molecular biomarkers of AD, and cog-
nitive performance, as well as with the accumulating effects of 10 identified AD-related genetic risk factors.
Discussion: These findings deepen our understanding of the associated mechanism underlying large-scale net-
work disruption, linking known molecular biomarkers and phenotypic variations in the AD spectrum.

Keywords: Alzheimer’s disease; brain network; canonical correlation analysis; functional connectivity; molecu-
lar biomarker

Impact Statement

Collectively, we highlight the association of 10 networks’ dynamics with molecular biomarkers, clinical phenotypes, and
accumulating effects of genetic variants. These findings shed light on the mechanism of functional network alteration and
pathological process and cognitive decline in the Alzheimer’s disease spectrum.

Introduction

In the past two decades, substantial progress has been
achieved on network perspective integrating modern

graph theory to capture the underlying mechanisms of com-
plex brain systems in healthy control subjects, when com-
pared with neurological disorders, such as Alzheimer’s
disease (AD). Resting-state networks (RSNs), which were

constructed with functional connectivity strength depending
on the intrinsic blood-oxygen-level-dependent signal from
the functional magnetic resonance imaging (fMRI) data,
can provide new information into how structurally segre-
gated and functionally specialized brain regions are intercon-
nected. In addition, RSNs have been found to be tightly
associated with neural correlates linked to cognitive impair-
ment in pre-clinical and clinical AD patients (Greicius et al.,
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2003; Jones et al., 2016; Palop and Mucke, 2016; Xie et al.,
2012). Importantly, accumulating evidences have demon-
strated that the abnormal activity of RSNs could be used as
markers to predict the potential mechanisms of cognitive
dysfunction in AD and related disorders (Palop and
Mucke, 2016). In reality, these RSNs reflect the intrinsic
functional coupling of large-scale brain systems and repre-
sent distinctive network-level features characterized by dif-
ferent neurodegenerative disorders (Pievani et al., 2011;
Teipel et al., 2015). Specifically, the default mode network
(DMN), as a key network of RSNs, was thought to be the pri-
mary large-scale system targeted, and gradually disrupted,
by the cognitive decline following the disease progression
of AD (Andrews-Hanna et al., 2010; Greicius et al., 2003;
Sorg et al., 2007; Xue et al., 2019). Furthermore, it was
conceptualized that different components of the DMN were
preferably affected and distinctively depended on the patho-
logical process stage of the AD spectrum (Andrews-Hanna
et al., 2010; Damoiseaux et al., 2012; Jones et al., 2011,
2016). As such, a new theory of a cascading network failure
was proposed, in which the DMN subsystem connectivity
changed across the entire AD spectrum, representing cascad-
ing patterns, where the posterior DMN was initially targeted
and then spread to frontal–parietal lobes. Notably, high con-
nectivity in the posterior DMN has been found to be closely
associated with amyloid deposition ( Jones et al., 2016,
2017). This model was the first to reveal the temporal rela-
tionship between altered DMN network connectivity and
AD molecular biomarkers, including amyloid-beta (Ab)
and Tau protein, in the AD spectrum (Jones et al., 2016,
2017). However, disruption of other RSNs, including atten-
tion networks, executive control networks, salience networks
(SANs), and visual networks (VISs), was also found to be as-
sociated with diverse cognitive decline and implicated in the
neural mechanisms underlying the pathophysiology of AD
(Chhatwal et al., 2018; Chong et al., 2017; Dhanjal and
Wise, 2014; Lehmann et al., 2015). Although these studies
focused on the temporal dynamics within specific networks
and represented different temporal progress along the AD
spectrum, the trajectory of large-scale network connectivity
changes over the long-standing disease course of AD is
largely unclear, and the neural links between these networks
have been largely ignored, which might play a critical role in
the progress of disease duration. Therefore, covering the en-
tire AD spectrum from normal to pre-clinical and clinical
stages and integrating network connectivity approaches
might provide a better way to reveal the dynamic alterations
of network connectivity and trace the trajectory of cognitive
decline associated with the pathophysiology of AD. More
importantly, advances in the development and application
of neuroimaging approaches and network analysis have
made it possible to investigate the neurobiological mecha-
nisms underlying the complex spatiotemporal relationship
between large-scale network connectivity and molecular bio-
markers. These approaches have allowed us to study how
these two variables synergistically or competitively affect
the cognitive decline characteristics of the AD spectrum.

In addition, genetic risk factors can significantly enhance
the susceptibility of late-onset AD (LOAD) occurrence and
progression via multiple important causal biological pro-
cesses (Hollingworth et al., 2011; Jiang et al., 2014; Karch
and Goate, 2015; Naj et al., 2011; Sleegers et al., 2010;

Tan et al., 2013; Zhang et al., 2013) or collectively deteriorating
structure and functional networks associated with LOAD (Lan-
caster et al., 2015; Su et al., 2017). Our group also reported that
the summative effect of 10 risk genetic variants was associated
with DMN disruption in amnestic mild cognitive impairment, a
pre-clinical stage of AD (Su et al., 2017). Thus, to further ad-
dress the accumulative effects of these genetic variants on the
large-scale network level, it is beneficial to explain the relation-
ship of how LOAD-associated genetic variants target the func-
tional coupling within- and between RSNs, and subsequently
contribute to disease progression in the AD spectrum.

In the current study, we present our assessment on the as-
sociation between Ab, phosphorylated tau (p-Tau), and total
tau (T-Tau) protein levels, with cognitive performance, spe-
cific RSNs, and the top 10 risk factors of genetic variants in
the AD spectrum. For this, we first explored the spatiotempo-
ral evolution of dynamic network connectivity changes with-
in- and between 10 specific RSNs following the disease
progression of the AD clinical spectrum. Second, a new ap-
proach, known as canonical correlation analysis (CCA), was
used to assess the relationship between network connectiv-
ity and pathological biomarkers, cognitive performance, as
well as the accumulative effects of 10 genetic variants in
the AD spectrum. Taken together, we identified determinants
associated with the spread of disrupted network incoherence,
molecular correlates, and summative effects of genetic vari-
ants on the RSNs, and generated new insights on novel
mechanisms underlying the phenotypic variability across
the AD spectrum at the system level.

Materials and Methods

Participants

All participants were selected according to the following
criteria: Caucasian, fMRI scan availability, three-dimensional
T1-weighted magnetic resonance imaging (MRI) scan avail-
ability (for spatial normalization), AD assessment scale-
cognitive subscale (ADAS-cog) score, mini-mental state
examination (MMSE) score, cerebrospinal fluid (CSF) bio-
marker data, and genotype data for rs3764650 of ABCA7,
rs7561528 of BIAUD, rs11136000 of CLU, rs610932 of
MS4A6A, rs3865444 of CD33, rs9296559 of CD2AP,
rs744373 of BIAUD, rs12034383 of CR1, rs11767557 of
EPHA1, rs11771145 of EPHA1, rs17125944 of FERMT2,
rs10498633 of SLC24A4, and rs3764650 of ABCA7. Accord-
ing to our criteria, 160 subjects, comprising 59 cognitively
normal (CN), 49 with early mild cognitive impairment
(EMCI), 28 with late mild cognitive impairment (LMCI),
and 24 with AD, were evaluated. Ethical approval was
obtained by the ADNI investigators (http://www.adni-info
.org/pdfs/adni_protocol_9_19_08.pdf). Subject descriptions,
acquisition parameters, and data preprocessing are provided
in detail in the Supplementary Data.

MRI data acquisition and preprocessing

See the Supplementary Methods section for acquisition
and preprocessing procedures.

Functional network analysis

We used the atlas of Power et al. (2011) to partition the
brain of each participant into 226 cortical and subcortical
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areas. Wavelet coherence was used to estimate the functional
connectivity between all pairs of regions of interest across
the AD disease spectrum, as previously shown (Gu et al.,
2015; Zhang et al., 2016). Subsequently, network connectiv-
ity was calculated within 10 RSNs as defined by previous
fMRI studies (Cole et al., 2013; Power et al., 2011). We
also calculated network connectivity between all pairs of
the 10 RSNs, as well as between each RSN and all other
RSNs (i.e., one-vs.-all-others).

Construction of various gene scores

Genes can be classified into protective and risk genes
according to whether their odds ratio (OR) value is greater
than one (Ayers et al., 2016; Siezen et al., 2006). There are
many ways to score genetic risk (Agerbo et al., 2015;
Kuchenbaecker et al., 2017). Based on the available data,
first, we multiplied the number of minor alleles of each
risk gene by the corresponding OR value to obtain the risk
score of a single gene. Then we added the corresponding
risk scores of all genes of the individual to obtain the poly-
genic risk score (PRS). In a similar manner, the polygenic
protection score (PPS) was calculated. The methods of calcu-
lation used in our article had been reported in other
researches (Agerbo et al., 2015). Finally, we subtracted
PRS and PPS to get a score, which we define as relative
risk score (RRS). This is our original indicator, which can re-
flect the resilience of the individual’s impact on genes.

Statistical analysis

Group comparisons of demographic characteristics and
network metrics statistical comparisons across the disease
spectrum were performed using a significance level of
p < 0.05 for all tests. In addition, a one-way analysis of var-
iance test was used to determine continuous variables. Post
hoc analysis was used with the Bonferroni correction
method. Chi-squared tests were also used for categorical
variables. Notably, each network metric (e.g., within-, one-
vs.-all-others-, and pairwise between-network connectivity)
was compared across groups using a generalized linear
model analysis adjusted for age, sex, education, and apolipo-
protein E-epsilon 4 (APOE-e4) allele number as covariates.
All p-values were adjusted for multiple comparisons (i.e.,
10 within-network metrics +10 one-vs.-all-others-network
metrics +45 pairwise between-network metrics = 65 compar-
isons) by the false discovery rate correction. And we gener-
ated a 226 · 226 connectivity matrix for each subject. We
tested for increases and decreases of network connections
in patients compared with healthy controls using a two-
sample t-test. Age, sex, education, and APOE-e4 allele num-
ber were adjusted as covariates. The connections of network
were considered significant if p-value was below a threshold
of p = 0.05 (uncorrected). The network-based statistic analy-
sis (NBS) method was used for multiple comparison correc-
tion. Each connection identified by the NBS satisfied
p < 0.05. In addition, we investigated nonlinearity between
CSF biomarker concentrations, as well as cognitive perfor-
mance and gene data using curve fitting.

Moreover, CCA was used to link clinical, CSF, and gene
data to the type of RSN connectivity in patients with AD.
For this, there were four set of variables, including a set
that included within- and pairwise between-network connec-

tivity, a set that consisted of each patient’s clinical cognitive
performance, a set of variables that included Ab-42, T-tau,
and P-tau181 levels, and a set that consisted of each patient’s
PPS, PRS, and RRS scores. This CCA provided us with a set
of modes that maximally correlated the network, clinical,
CSF, and gene variables. Notably, for each CCA mode, we
used a permutation testing procedure to evaluate the signifi-
cance of the corresponding canonical correlation (Nichols,
2002; Smith et al., 2015). The p-values for the correlation
of each CCA mode pair were explicitly corrected for multi-
ple testing across all CCA mode pairs estimated (i.e., against
the maximum correlation value) (Smith et al., 2015). More
strictly, Bartlett’s v2 statistic (Dunlap et al., 2000) was
performed to assess the significance of the full multivariate
distribution. A CCA mode pair was considered to be signif-
icantly correlated only if both tests rejected the null hypothesis
of no association at the level of p < 0.05. Given a significant
CCA mode, we next assessed the Pearson’s correlation be-
tween the CCA mode and the corresponding set of original var-
iables of which it consisted. More specifically, we correlated
the multivariate projection of the network variables with the
original, univariate network variables. In a similar manner,
we correlated the multivariate projection of the clinical cluster
summaries with the individual clinical cluster summary. These
tests helped quantify the contribution of the individual net-
work’s strength and clinical cluster summaries to the corre-
sponding CCA mode(s). A detailed illustration of the CCA
used in this study is provided in the Supplementary Data.

We also computed a Pearson’s correlation between the
value of the data in clinical, CSF, and gene variables and
the first brain network CCA mode. Finally, the correlation
coefficients were visualized using the radar plots in Figure 4.

Data availability

The authors have carefully documented all data, methods,
and materials used to conduct the research in this article and
agreed to share anonymized data by request from any quali-
fied investigator.

Results

Demographics and clinical characteristics
of study subjects

The demographics and clinical characteristics of participants
in our study are presented in Supplementary Table S1. Distri-
butions of age, sex, and educational level did not differ signifi-
cantly across the entire spectrum of the disease. In the whole
cohort, significant differences were found in APOE-e4 carri-
ers’, MMSE and ADAS-Cog scores, and in CSF biomarker
levels across the AD spectrum. In addition, we observed non-
linear relationships between CSF biomarker concentrations and
cognitive scores across the disease spectrum (Supplementary
Fig. S1). In this study, we focused on the 10 well-established
AD risk genes identified in our analyses (Supplementary
Table S2). Here, 2 genes were represented by more than 1
single-nucleotide polymorphism, and our final number of
variants was 12. The distribution of genotypes retained in
the study is presented in Supplementary Table S3. Impor-
tantly, there were no statistically significant differences ob-
served in the genotype distribution except for EPHA1
rs11767557 across the AD spectrum.
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FIG. 1. Node colors (A) represent Power-atlas cortical and subcortical regions consisting of 10 resting-state networks. Net-
work roles (E) in brain networks of subjects (B) with CN, EMCI, LMCI, and AD. Line chart (C) displays the within- and one-
versus-all-others network connectivity. Within- and pairwise between-network connectivity matrices of subjects (D) with
CN, EMCI, LMCI, and AD; p value matrix of group differences in within-, one-versus-all-others-, and pairwise between-
network connectivity (F). Asterisks indicate a significant difference among the four groups. AD, Alzheimer’s disease;
AUD, auditory network; CN, cognitively normal; CON, cingulo-opercular network; DAN, dorsal attention network;
DMN, default mode network; EMCI, early mild cognitive impairment; FPN, frontoparietal network; LMCI, late mild cog-
nitive impairment; SAN, salience network; SMN, sensory network; SUB, subcortical network; VAN, ventral attention net-
work; VIS, visual network.
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Network modeling

For our study, we identified 10 well-established, large-
scale RSNs, which were derived from the Power atlas
(Power et al., 2011) (Fig. 1A; Supplementary Table S4):
the auditory network (AUD), the cingulo-opercular network
(CON), the dorsal attention network (DAN), DMN, the fron-
toparietal network (FPN), the SAN, the sensory network
(SMN), the subcortical network (SUB), the ventral attention
network (VAN), and the VIS. To better understand how the
functional roles of specific networks change during the course
of a disease, we qualitatively characterized the average func-
tional role of the 10 identified RSNs into a two-dimensional
plane mapped out by their within- and between-network con-
nectivity (Fig. 1B). According to our within- and between-
network connectivity mean values, which are depicted by hor-
izontal and vertical dotted lines in Figure 1E, all the RSNs
from the four groups were concordantly classified into four
network roles (Fig. 1B), as follows: the cohesive connector
(SMN), the cohesive provincial (AUD), the incohesive connec-
tor (SAN and VAN), and the incohesive provincial (DMN),
whereas the AUD, CON, DAN, FPN, and SUB connections
showed divergent roles across the entire spectrum of the dis-
ease. Specifically, the AUD, CON, and DAN connections
were found to be incohesive connectors, respectively, in the
CN and AD groups, and the opposite was found in the EMCI
and LMCI groups. Notably, the SUB connections were found
to be associated with cohesive and provincial networks in the
CN and EMCI groups, respectively, although in the LMCI
and AD groups, it was found to act as a cohesive connector.
Thus, to better observe dynamic changes in the roles of each
network, we drew the mean values of within- and between-
network connectivity into discounted forms (Fig. 1C), which
revealed dynamic spatiotemporal patterns across the AD spec-
trum. Also, we presented the matrices of 10 RSNs (Fig. 1D)
and tested the differences according to the means of within-
and between-network connectivity across the AD spectrum
(Fig. 1F). Particularly, the AUD connection showed signifi-
cantly within-network connectivity differences. In addition,
significant differences in all the network connectivity links
were found in any two groups; see Supplementary Data for de-
tailed information (Supplementary Figs. S2 and S3).

Topologic properties of whole-brain networks
belonging to the AD spectrum

We further explored the topologic properties of whole-brain
networks across the AD spectrum. The four groups identified
exhibited a typical feature of small-world topology over the
entire range of sparsity (r > 1). When the sparsity was 0.48,
significant differences were represented in the global and

local efficiency of the four groups. Notably, no significant
group differences were observed when the clustering coefficient
(Cp) and characteristic path length (Lp) over the entire range of
sparsity were analyzed (Supplementary Fig. S4). Moreover, re-
garding nodal characteristics, the differences among the disease
spectrum of nodal efficiency, nodal betweenness centrality, and
the degree of centrality were tested at the sparsity of 0.48. As
illustrated in Supplementary Figure S5, there were significant
group differences of nodal efficiency ( p = 0.003), nodal be-
tweenness ( p = 0.019) centrality, and degree centrality
( p = 0.003) in the AD spectrum. Interestingly, the observed
differences of those characteristics were mainly located in
the DMN, FPN, and SMN connections, while the nodal char-
acteristics of ROI161, which belongs to FPN, were used to
draw the violin chart. The statistically significant correlations
were found between cognitive performances, CSF biomarkers,
gene scores and network parameters (Supplementary Fig. S6).

Correlation patterns of network connectivity
across the AD spectrum

Next, we performed a two-step CCA to link brain network
connectivity measures with two clinical surveys and corre-
late CSF biomarkers in patients with AD. First, in an effort
to understand the composition of the first clinical CCA
mode, we tested each of the two clinical variables for univar-
iate correlations. Here, we found that the first clinical CCA
mode was highly correlated with the subject’s MMSE
(r = 0.77, p < 0.0001) and ADAS-cog (r = 0.77, p < 0.0001)
scores (Fig. 2A). Similarly, we detected that the first CSF
CCA mode was highly correlated with the levels of T-tau
(r = 0.74, p < 0.0001) and P-tau181 (r = 0.72, p < 0.0001)
and moderately correlated with Ab42 (r = 0.51, p = 0.0002)
(Fig. 2B). As shown in Figure 2C, the first network CCA
mode was significantly correlated with 54 of the 55 original
network variables, except the between-network connectivity
of the SUB-VAN network pair. Notably, the first pair of net-
work and clinical variate CCA modes were significantly cor-
related (Fig. 2D; canonical correlation: r = 0.97, p < 0.0001),
and the correlation of the first pair of network and CSF variate
CCA modes was found to be statistically significant (Fig. 2E,
canonical correlation: r = 0.99, p < 0.0001). Detailed informa-
tion for these correlation coefficients (r) and p-values are de-
scribed in Supplementary Table S5.

Risk genetic variation accumulating effects
on network connectivity, biomarkers,
and cognitive performances across the AD spectrum

To investigate whether genetic variations were associated
with the mechanisms underlying the dynamic changes observed

‰

FIG. 2. Correlations and their significance between the following: (A) the behavioral performance including MMSE and
ADAS-cog variables and the first clinical CCA mode; (B) the CSF biomarkers including Ab42, T-tau, and P-tau181
variables and the first CSF CCA mode; (C) within- and pairwise between-network variables and the first network CCA
mode; (D) the first pair of network and clinical variate CCA mode; and (E) the first pair of network and CSF variate CCA
modes. Note that the p values in A, B, and C, but not D and E, have been log10-transformed and the dashed lines represent a
log10-transformed p-value of 0.05:log100.05 & �1.301. U and V in D and E represent the CCA variates derived from the
network, clinical, and CSF variables. No significant correlation existed between SUB-VAN variables in C. ADAS-cog,
Alzheimer’s disease assessment scale-cognitive section; Ab42, amyloid-b 1–42; CCA, canonical correlation analysis; CSF,
cerebrospinal fluid; MMSE, mini-mental state examination; P-tau181, Tau phosphorylated at threonine 181; T-tau, total tau.
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in the network, we analyzed the accumulating effects of 10 well-
established AD risk genes on network connectivity using the
CCA approach. For this, we divided these 10 genes into two
groups according to their OR values, where genes with OR val-
ues of less than 1 were classified as protective genes, and genes
with OR values greater than 1 were classified as risk genes (Sup-
plementary Table S2). Then, to obtain the PRS, we multiplied
the minor allele number of all the risk genes of each subject
by the corresponding OR values and added them together. In a
similar manner, the PPS was estimated. Here, the PRS minus
the PPS was defined as RRS. Notably, there were no significant
group differences in PPS, PRS, and RRS in the AD spectrum

(Fig. 3A), and no statistically significant correlations were
found between CSF biomarkers and the three gene scores (Sup-
plementary Fig. S7). Interestingly, we tested univariate correla-
tions for each of the three gene variables to better understand
the composition of the first gene CCA mode, and identified
that the first clinical CCA mode was highly correlated with
the PPS (r = 1, p < 0.0001), PRS (r = 1, p < 0.0001), and RRS
(r = 1, p < 0.0001) values (Fig. 3B). Particularly, the first pair
of network and gene variate CCA modes were statistically sig-
nificant (Fig. 3C; canonical correlation: r = 0.92, p = 0.0039).
Detailed information for these correlation coefficients (r) and
p-values are described in Supplementary Table S6.

FIG. 3. Accumulating effects of ten genetic variations on the network connectivity across the AD spectrum. (A) No sig-
nificant differences were found in PPS, PRS, and RRS across the AD spectrum (PPS: F(3, 156) = 0.19, p = 0.90; PRS:
F(3, 156) = 0.85, p = 0.47; RRS: F(3, 156) = 0.84, p = 0.47). (B) Correlations and their significance between the means of risk,
protective, and relative gene variables and the first gene CCA mode. (C) Correlations and their significance between the
first pair of network variables and the first gene CCA mode. Note that the p values in B have been log10-transformed and
the dashed lines represent a log10-transformed p-value of 0.05:log100.05 & �1.301. PPS, polygenic protection score;
PRS, polygenic risk score; RRS, relative risk score.
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Associations with network connectivity, CSF biomarkers,
gene scores, and cognition performances across
the AD spectrum

Our analysis identified a single significant CCA mode that
presented patterns of brain network connectivity that were
correlated with patterns of cognitive function, CSF biomark-
ers, and genetic variants. Nevertheless, the networks that are
specifically related to cognition scores, CSF biomarkers, and
gene scores are still unknown. Therefore, we performed a
post hoc Pearson’s correlation analysis to determine the di-
rection and magnitude of the associations between the first
network CCA mode with cognition and gene scores, as
well as CSF biomarkers. In our analysis, we found that
MMSE scores were mostly associated with a decrease in
connectivity between the DAN and SMN connections. Par-
ticularly, the ADAS-cog scores were mostly associated
with an increase in connectivity between the DAN and the
SMN, the CON and the FPN, as well as within the SMN con-
nectivity (Fig. 4A). In addition, Ab42 levels were found to be
associated with an increase in connectivity between the SAN
and SUB connections, and negatively associated with the
network connectivity between the FPN and SAN connec-
tions. T-tau levels were also associated with an increase in
connectivity between the FPN and SAN connections. Nota-
bly, T-tau and P-tau181 were both negatively associated
with network connectivity between the SAN and SUB, as
well as between the DMN and FPN connections (Fig. 4B).
Furthermore, PPS was found to be associated with an in-
crease in connectivity between the AUD and DMN connec-
tion, and negatively associated with network connectivity
between the DAN and FPN connections, while PRS and
RRS were found to be mostly, positively correlated with net-
work connectivity between the CON and VAN and the CON
and SMN connections, as well as within-CON connectivity,
respectively (Fig. 4C). Detailed information for these corre-
lation coefficients (r) and p-values are described in Supple-
mentary Table S7.

Discussion

To the best of our knowledge, this is the first study to inte-
grate large-scale network analysis with CCA approaches to

identify differential changes of brain networks in the AD spec-
trum. These changes range from normal cognition to demen-
tia, and this study aimed to investigate the trajectory of
spatiotemporal evolution dynamics and potential relationships
among brain networks, pathological biomarkers, genetic vari-
ants, and cognitive performances in the AD spectrum.

Dynamic spatiotemporal patterns of large-scale
brain networks in the AD spectrum

Consistent with our hypothesis, we identified distinctive
patterns of RSNs, along with DMN, which represent dy-
namic changes of within- and between networks along with
disease progression, suggesting that the differential spatio-
temporal patterns of AD-related networks are associated
with different pathological stages of the AD spectrum. Previ-
ously, neuroimaging studies constantly reported that the
widespread DMN disruption in the frontal-posterior areas
and hippocampus of the brain (emerged as a result of prom-
inent atrophy and abnormal metabolism in core regions of
AD-related networks) indicated the differential DMN trajec-
tories in the prodromal (i.e., pre-clinical) AD stage, as well
as in asymptomatic individuals at risk for AD (Chiesa
et al., 2019). Given the relative dependence of large-scale
brain networks, multiple brain networks associated with
AD-related changes beyond the DMN subsystems have
been investigated (Agosta et al., 2012; Brier et al., 2012;
Lehmann et al., 2015). According to these studies, although
distinctive network changes were found, the interchanges of
brain networks in pre-clinical and asymptomatic AD patients
were not further investigated. Nonetheless, it is intriguing
that until recently, few studies began to explore the spatial
and temporal patterns of brain networks following disease
progression in the human brain. These new observations ini-
tially revealed that specific networks, consisting of those
preferably selected in vulnerable brain regions, especially
in the posterior, frontal, and prefrontal cortices, as well as
in the medial temporal lobe, represented discrepancy in spa-
tial and temporal network patterns at the large-scale network
level (Brier et al., 2014; Chen et al., 2011; Zhu et al., 2016).
Currently, we have identified dynamic changes within spe-
cific brain networks in normal and AD patients. Importantly,

FIG. 4. Relationships of brain networks, CSF biomarkers, genetic variants, and cognitive function in the AD spectrum.
Radar plots showing patterns of association of specific network variables with clinical assessments (A), CSF biomarkers
(B), and polygenic scores (C) in the AD spectrum. The values displayed by the dots in the radar plots are the values of Pear-
son’s correlation coefficients, the values of no statistical coefficients are depicted by black nodes.
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based on dynamic trends between networks, we found that a
network disruption was not sustained, but instead repre-
sented a bouncing mode or resilience from a normal to an
AD brain. Specifically, in the early stage of EMCI, all
RSNs represented an increased trend within network connec-
tivity by enhancing inner cohesive ability. Notably, only 3
out of 10 RSNs were characterized by an increased connec-
tivity between networks, which indicated a heightened con-
nector ability among networks. For example, the inner
cohesive ability of the CON connection named the cingulo-
opercula network, which is primarily responsible for the pro-
cess of cognitive function (Dosenbach et al., 2008; Fair et al.,
2007), maintains the relative slightly increased state from
CN to EMCI, then moves toward a lower level in the
LMCI stage, and ultimately significantly increases in the
AD stage. Actually, these interchanges between brain net-
works reveal the dynamic changes of inner cohesive ability
and the reflected flexible reorganization of RSNs (Mohr
et al., 2016). Correspondingly, these spatiotemporal sequen-
tial alterations at the large-scale network level might support
the view that inner cohesive abilities within networks and
connectors synergistically contribute to the dynamic reorga-
nization of brain RSNs, which may be induced by age-related
mechanisms and/or AD-related pathological progression
(Palop and Mucke, 2016).

Network connectivity, molecular biomarkers, genetic
variants, and cognitive performance in the AD spectrum

Importantly, characterizing and quantifying the relation-
ship between network connectivity and molecular biomarkers
are beneficial to elucidate the differential spatiotemporal pat-
tern of AD pathophysiology at the systems level. In addition,
in the current study, researchers have focused on the inves-
tigation of neural correlates of network connectivity associ-
ated with the molecular pathology and risk factors affecting
brain network features. It was also recently conceptualized
that network connectivity, as a candidate intermediate bio-
marker, can bridge the neural links of upstream effects
with molecular determinants of neurodegeneration and sus-
ceptibility genes, and downstream effects with clinical phe-
notypes (Pievani et al., 2014). Recently, a cascading network
failure model of AD was also proposed ( Jones et al., 2017),
which argued that a DMN subsystem disruption was ascribed
to tau-related elevated distribution and then triggered wide-
spread compensatory rearrangements of those selected vul-
nerable brain regions that were previously associated with
amyloidosis ( Jones et al., 2016). Recent studies have
shown that CCA, a powerful multivariate approach that
seeks to identify clusters of maximal correlation between
two groups of variables, can detect associations between
structural or functional connectivity and behavioral mea-
sures (Power et al., 2011; Smith et al., 2015). By using
this method, we demonstrated that the large-scale brain net-
work abnormality observed was significantly correlated with
molecular biomarkers and phenotypic variations belonging
to the AD spectrum beyond DMN subsystems. This original
network alteration may have, initially, reproduced the ob-
served spatiotemporal pattern discrepancies, which account
for a proposed molecular pathophysiological mechanism at
the distributed network level. More importantly, brain hubs
presenting high connectivity were also found to have more

Ab deposition, while converging evidence from molecular,
AD-related animal models, in vivo microdialysis, and other
electrophysiological studies has also shown that disrupted
synaptic activity and plasticity relating to network activity
can be associated with Ab deposition (Ingelsson et al.,
2004; Jagust and Mormino, 2011). As such, widespread
changes of large-scale brain networks may be ascribed to
the process of Ab or tau pathophysiology (Buckner et al.,
2009; Jones et al., 2017). In addition, previous AD-related
network studies have shown that network activities support-
ing cognition are altered decades before the expected onset
of clinical signs and symptoms of AD, highlighting the
fact that affected networks could predict future pathology
and brain atrophy (Palop and Mucke, 2016). Thus, large-
scale brain networks might primarily bridge the natural
links between molecular biomarkers and clinical phenotypic
variants across the AD spectrum.

Moreover, it has been also demonstrated that different
neural dynamics are detectable and associated with carriers
of several gene mutations, which are primarily involved in
the pathophysiology of LOAD (Zhang et al., 2013). These
susceptible genetic variants may modulate regional sponta-
neous brain activity, structural and functional integrity of
brain network, and may be related to the progression of the
AD spectrum (Chen et al., 2015; Wang et al., 2013). Our
group has also reported that dynamic changes in the DMN
system are driven by the APOE-e4 genotype, as well as by
the intrinsic DMN connectivity, which moderates the effect
of the APOE genotype on cognition and provides a patholog-
ical stage-dependent neuroimaging biomarker for early dif-
ferentiation of the AD spectrum (Zhu et al., 2019).
Currently, by using the CCA approach, we further identified
the accumulating effects of 10 top risk genetic variants on
large-scale brain network disruption, although not on the mo-
lecular biomarkers or clinical phenotypes across the AD
spectrum. That is, the emergent risk of genomic contribu-
tions accumulated that would subsequently lead to network
integrity disruption, without mounting up to impair molec-
ular biomarkers or cognitive function of the AD spectrum.
Importantly, these findings may shed light on the molecular
neurobiology of network disruption and ultimately clarify
the pathophysiology of neurodegenerative diseases, such
as AD. Three limitations about this study should be noted.
First, the relatively small sample size, cross-sectional stud-
ies may limit the generality of our findings. Second, re-
cently, several studies have reported that the CSF p-Tau/
Tau ratio is robust and probably early biomarkers for neu-
rodegenerative disease, including sporadic Creutzfeldt–
Jakob disease and AD (Foucault-Fruchard et al., 2020).
We also made correlation analysis of the T-tau/P-tau181
ratio of each group and network topology properties, re-
spectively. The results show that only the network proper-
ties of two nodes and T-tau/P-tau181 ratio are correlated
in the LMCI group, indicating that the T-tau/P-tau181
ratio may have a greater potential value for diagnosing
AD, but it may be less relevant to those topological proper-
ties of the brain functional network. These results may be
influenced at least, in part, by the small size of our cohort,
or insufficient calculation of network topology property in-
dicators. In the future, we will conduct a more comprehen-
sive study on the relationship between CSF biomarkers and
topological properties. Third, multimodal neuroimaging
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approaches integrated with bioinformatics should be imple-
mented, mainly to provide direct evidence on the molecular
basis of neural network dynamic patterns of reorganization
and associations with clinical phenotypes, as well as to po-
tentially classify whether dynamic network alteration is
ascribed to compensatory or adaptive strategies from the
trajectories of molecular pathways.

Conclusion

We demonstrated that the dynamic patterns of multiple
network alterations were associated with molecular biomark-
ers, clinical phenotypes, and accumulating effects of 10 top
risk genetic variants across the AD spectrum. Moreover,
our findings strongly implicate large-scale brain network al-
terations with the pathophysiology of Ab and tau, which re-
sult in the typical clinical phenotypic variants of AD. Future
studies that combine task fMRI and diffusion MRI data are
valuable to investigate initial relationships among brain net-
work changes, molecular biomarkers, and clinical pheno-
types across the AD spectrum. That would extend our
insight into the pathologies of neuropsychiatric disorders,
and in turn enable a better understanding of the biological
meaning of the diverse functional connections of different
brain networks.
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